Lesson 6. Equations of Lines in 3D

1 Today...

• Different ways of writing equations for lines in 3D

2 Vector equations

• A line *L* is determined by a point $P_0(x_0, y_0, z_0)$ and a direction given by a vector \vec{v}

- The **position vector** of a point $P(a_1, a_2, a_3)$ is the vector from the origin O(0, 0, 0) to the point P
- Let \vec{r}_0 be the position vector of P_0 : that is, $\vec{r}_0 =$
- The position vector of every point on *L* can be expressed as the sum of \vec{r}_0 and a scalar multiple of \vec{v}
- The **vector equation** of line *L* is
 - Each value of the **parameter** *t* gives a position vector \vec{r} on the line *L*
 - Positive values of $t \Leftrightarrow$ points on one side of P_0
 - Negative values of $t \Leftrightarrow$ points on the other side of P_0

Example 1.

- a. Find a vector equation for the line that passes through the point (2, 4, 3) and is parallel to the vector $\vec{i} 2\vec{j} + 4\vec{k}$.
- b. Find two other points on the line.

3 Parametric equations

- Suppose $r(t) = \langle x(t), y(t), z(t) \rangle, \vec{v} = \langle a, b, c \rangle$
- So, we can write the vector equation $\vec{r} = \vec{r}_0 + t\vec{v}$ as

$$\langle x(t), y(t), z(t) \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$

- The **parametric equations** of line *L* are
- The numbers *a*, *b*, *c* are called the **direction numbers** of line *L*

Example 2. Find a set of parametric equations for the line described in Example 2.

4 Symmetric equations

• By solving the parametric equations to eliminate *t*, we obtain the **symmetric equations** of line *L*:

Example 3. Find symmetric equations for the line through (2, -1, 1) and perpendicular to both $\vec{u} = \langle 1, 0, 1 \rangle$ and $\vec{v} = \langle -1, 1, 0 \rangle$.

5 Equations of a line in 3D are not unique

- We can use any point on the line as the starting point $P_0 = (x_0, y_0, z_0)$
- We can also use any vector parallel to the line as the direction vector $\vec{v} = \langle a, b, c \rangle$

Example 4. In Example 2, we considered a line that passes through the point (2, 4, 3) and is parallel to the vector $\vec{i} - 2\vec{j} + 4\vec{k}$.

a. Using a different point, find another set of parametric equations for this line.

b. Using a different direction vector, find another set of parametric equations for this line.

6 Parallel lines and skew lines

- Two lines are **parallel** if their directions are given by parallel vectors
- Two lines are **skew lines** if they do not intersect and are not parallel
 - $\circ~$ i.e., they do not lie on the same plane

Example 5. Here are parametric equations for two lines:

$$L_{1}: \quad \begin{cases} x = 1 + t \\ y = -2 + 3t \\ z = 4 - t \end{cases} \qquad \qquad L_{2}: \quad \begin{cases} x = 2s \\ y = 3 + s \\ z = -3 + 4s \end{cases}$$

Are they parallel? Are they skew lines?