Lesson 6. Equations of Lines in 3D

1 Today...

- Different ways of writing equations for lines in 3D

2 Vector equations

- A line L is determined by a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and a direction given by a vector \vec{v}

- The position vector of a point $P\left(a_{1}, a_{2}, a_{3}\right)$ is the vector from the origin $O(0,0,0)$ to the point P
- Let \vec{r}_{0} be the position vector of P_{0} : that is, $\vec{r}_{0}=$
- The position vector of every point on L can be expressed as the sum of \vec{r}_{0} and a scalar multiple of \vec{v}
- The vector equation of line L is
- Each value of the parameter t gives a position vector \vec{r} on the line L
- Positive values of $t \Leftrightarrow$ points on one side of P_{0}
- Negative values of $t \Leftrightarrow$ points on the other side of P_{0}

Example 1.

a. Find a vector equation for the line that passes through the point $(2,4,3)$ and is parallel to the vector $\vec{i}-2 \vec{j}+4 \vec{k}$.
b. Find two other points on the line.

3 Parametric equations

- Suppose $r(t)=\langle x(t), y(t), z(t)\rangle, \vec{v}=\langle a, b, c\rangle$
- So, we can write the vector equation $\vec{r}=\vec{r}_{0}+t \vec{v}$ as

$$
\langle x(t), y(t), z(t)\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle
$$

- The parametric equations of line L are
- The numbers a, b, c are called the direction numbers of line L

Example 2. Find a set of parametric equations for the line described in Example 2.

4 Symmetric equations

- By solving the parametric equations to eliminate t, we obtain the symmetric equations of line L :

Example 3. Find symmetric equations for the line through $(2,-1,1)$ and perpendicular to both $\vec{u}=\langle 1,0,1\rangle$ and $\vec{v}=\langle-1,1,0\rangle$.

5 Equations of a line in 3D are not unique

- We can use any point on the line as the starting point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$
- We can also use any vector parallel to the line as the direction vector $\vec{v}=\langle a, b, c\rangle$

Example 4. In Example 2, we considered a line that passes through the point $(2,4,3)$ and is parallel to the vector $\vec{i}-2 \vec{j}+4 \vec{k}$.
a. Using a different point, find another set of parametric equations for this line.
b. Using a different direction vector, find another set of parametric equations for this line.

6 Parallel lines and skew lines

- Two lines are parallel if their directions are given by parallel vectors
- Two lines are skew lines if they do not intersect and are not parallel
- i.e., they do not lie on the same plane

Example 5. Here are parametric equations for two lines:

$$
L_{1}:\left\{\begin{array}{l}
x=1+t \\
y=-2+3 t \\
z=4-t
\end{array}\right\} \quad L_{2}:\left\{\begin{array}{l}
x=2 s \\
y=3+s \\
z=-3+4 s
\end{array}\right\}
$$

Are they parallel? Are they skew lines?

